

Structuration and mechanical properties of gels made from gluten proteins

Mohsen Dahesh, Amélie Banc, Agnès Duri-Bechemilh, Marie Helene Morel,

Laurence Ramos

► To cite this version:

Mohsen Dahesh, Amélie Banc, Agnès Duri-Bechemilh, Marie Helene Morel, Laurence Ramos. Structuration and mechanical properties of gels made from gluten proteins. International soft matter conference (ISMC), Sep 2013, Rome, Italy. 2013. hal-01601702

HAL Id: hal-01601702 https://hal.science/hal-01601702

Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike | 4.0 International License

Structuration and Mechanical Properties of Protein Gels Made From Gluten Proteins

Mohsen Dahesh^{1,2}, Amélie Banc¹, Agnès Duri², Marie-Hélène Morel², Laurence Ramos¹ Laboratoire Charles Coulomb UMR5221, CNRS and Université of Montpellier 2, 34095 Montpellier France

²Ingénierie des Agropolymères et Technologies Emergentes UMR 1208, CIRAD, INRA, Montpellier SupAgro, 34000 Montpellier, France

Abstract

ADSITIACT Wheat gluten proteins are among the most complex protein networks in nature, due in particular to their poor solubility in water and to their viscoelastic behavior. Gluten networks are often considered as transient networks comprising extensible biopolymer segments of flexible or semiflexible chains between junction points¹. However, the exact structure of the network, the nature of the junction points and the way it get structured under shear remain to be clarified. Here we report the visco-elastic behavior of model systems composed of gluten proteins near gelation. We build model systems by dispersing in ethanol-water mixtures two major protein groups, gliadins and dlutenins, bind index systems by usperang in entationwater mixtures two major protein groups, gliadins and glutenins, that we have purified from gluten. Rheological properties show a slow evolution over time scales of the order of days of the linear frequency dependence complex modulus of the of the linear frequency dependence complex modulus of the samples, with a concentration-dependent liquid to solid transition. Interestingly, we find that all data acquired at different protein concentrations and different limes after sample preparation can be scaled onto a master curve showing a cross-over from a soft solid behavior at low frequency to a visco-elastic fluid at high frequency. Rheological data are completed by scattering experiments in order to elucidate the complex structure of the materials. For gel samples, the scattering profiles display at small length scales features typical of polymer and evidences at larger length scale a fractal structure that we interpret as being due to the highly disordered state of the junction points. Biochemical assays are also performed to elucidate the origin of the sample aging.

Background

What is gluten?

Gluten can be defined as the rubbery mass proteins that remain when wheat dough is washed by water to discard starch granules and water-soluble constituents.

Gluten proteins play a key role in baking quality of whea product by conferring water absorption capacity, cohesivity visco-elasticity on wheat dough.

Gluten contains hundreds of protein components which are present either as monomers or polymers. These proteins can be classified mainly by two broad groups: gliadin and glutenin

1. Monomeric gliadins (15,000<M_w<80,000g/mol) Viscositvof wheat dough?

2. Polymeric glutenin (150,000<M_w<8,000,000

ŝ

·Gluten is like a 'two component glue', in which gliadins car be understored as a plasticizer or solvent for gluterins. A proper mixture of both fractions is essential to impart the viscoelastic properties of wheat dough and the quality of the end product².

Motivation

Wheat is the third most-produced cereal in the world afte maize and rice. Wheat is mostly used in food industry to make product like bread which is prepared by wheat dough baking

Gluten plays a key role in the bread making properties of wheat dough and gives the unique visco-elastic properties of wheat dough. Many efforts has been done to reveal structuration and mechanical properties of wheat dough but there is not a firm answer for the moment

Because of complexity of gluten composition we decided to study the structure and visco-elasticity of purified fractions.

Length scales ≥ ξ_S Semidilute polymer behavior

LABORATOIRE

ect study (model system A+B)

structure of the Small angle X-ray scattering

Day 2
Day 20

ò-22%

Infrared spectroscopy

Conclusion & outlooks

Two model system developed from gluten proteins Model system A:

Mechanical properties shows Newtonian behavior

- Model system A+I
- Mechanical properties shows a concentration and time dependent liquid-solid transition (gelation). Moreover frequency dependent complex moduli (G',G") can be scaled onto a master
- => Self-similarity of the model system with different concentrations
- and aging times.
- G' has exponential dependence on Φ untill certain concentration
- Dilute regime structure: monodisperse objects with internal dynamic mode (sel avoiding walk in good solvent)
- Semidilute regime structure
- The model system can be described by a semidilute polyme model at small scale and fractal structure at large scale
- Outlooks 1. What is respective role of the gliadin and glutenin in the Mode system A+B gelation?
- Is it helpful to study mechanical properties of mixture of model system A and A+B ?
- 3. What is the structural origin of aging in model system A+B?
- 4. Shear rheology of model system A+B versus concentration and time is also helpful for structuration study

1. 2. 3. 4. 5.

6.

- Trevor S. K. Ng et al. J. Rheol. 2008, 52(2), p417-449 H. Wieser et, F.God Microbiology 2007, 24, p115-119 S. Uhrayakumaren, et al. Rheol Acta, 2002, 41; p162-172 A. N. Faicao, Macromolecules, 1993, 26, p5305-534 H. Watron, X-raya and Liptic Stattering Methods Applied to Soft Condensed Matter Edited by P.Linder & Th. Zemb, O Glatter 2002 Amsterdam: North Holland. V. Trappe, et al. Macromolecules 1997.30, p2365-2372.